science

Machine learning for damaging mutations prediction – EurekAlert


The new-generation sequencing technology has ushered in a new era in medicine, making it easier to identify a sequence of nucleotides in the DNA or a sequence of amino acids in the proteins of a specific individual and use this information for both diagnosis and treatment. Minute alterations in these sequences, mutations can be indicative of a minor disorder and, sometimes, a grave disease.

Scientists from Skoltech, the Technical University of Munich, St. Petersburg Polytechnic University and the Indian Institute of Technology Madras (Chennai, India) developed a machine-learning-based method that allows analyzing the atomic structures of proteins and predicting the pathogenicity of mutations. The method is adapted for transmembrane proteins that account for 25-30% of all the proteins in a cell and often serve as targets for drugs.

“In this study, we used a combination of 1D information on the amino acid sequences of proteins and 3D information on the protein’s atomic structures to create an effective machine-learning-based model that helps identify disease-associated amino acid substitutions in membrane proteins,” says the first author of the study and Assistant Professor at Skoltech, Petr Popov.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.



READ SOURCE

Leave a Reply

This website uses cookies. By continuing to use this site, you accept our use of cookies.